FÖRORD

Enligt särskild lag har kommunerna ålagts att upprätta kommunala energiplaner och därvid redovisar en handlingsplan/strategi för hantering av frågor som rör energianvändningen.

I en särskild projektgrupp har en översyn gjorts av den energiplan som kommunfullmäktige antog 1997-09-17.

Projektgruppen har bestått av
Sven H Carlson (sammankallande)
Lennart Samefors
Göran Mattson
Göran Edman
Arne Carlsson
Jan Johansson
Helge Lindell (sekreterare)

Enligt tidigare plan skulle en översyn ske efter 4 år. Planarbetet har inriktats på
- en kartläggning av nuläget – informationsdel.
- formulering av mål och redovisning av olika åtgärder och projekt.

Intentionerna med arbetet har varit:
- att främja en hållbar miljö- och energistrategi som ger kommunen stabilitet i energifrågor.
- Att ta fram konkreta åtgärdsförslag som leder till minskning av energi-behov och samtidigt en bättre miljö.

Möjligheterna att uppfylla de mål som anges blir i många fall beroende av vilka medel som samhället/kommunen har möjlighet att tillskjuta.

Projektgruppen framlägger med detta dokument förslag till reviderad energiplan för politisk prövning.

Kommunfullmäktiges antagande föreslås föregås av en regelrätt remiss.

Vetlanda 2005-06-15

Sven H Carlson Helge Lindell
Priset varierar med vattentillgången .......................................................... 20

ÄTGÄRDSDELEN

ENERGIEFFEKTVISERING AV HYRESFASTIGHETER ................................. 23
Förslag ............................................................................................................. 23
Miljökonsekvensbeskrivning ....................................................................... 23

GASUTVINNING FÖR UPPVÄRMNING OCH/ELLER DRIVMEDEL .................. 24
Ätgärdsförslag ............................................................................................. 24
Miljökonsekvensbeskrivning ....................................................................... 24

ALTERNATIVA FORDONSBRÄNSLEN .......................................................... 25
Etanol ............................................................................................................ 25
Dimetyler (DME) .......................................................................................... 25
Rapsmetyler (RME) ...................................................................................... 25
Biogas ............................................................................................................ 25
Eldrift- bränslecell- och hybridfordon ........................................................ 25
Ätgärdsförslag ............................................................................................. 26
Miljökonsekvensbeskrivning ....................................................................... 26

VÄGAR OCH TRAFIK ................................................................................... 27
Ätgärdsförslag ............................................................................................. 27
Miljökonsekvensbeskrivning ....................................................................... 27

ENERGIBESPARING ................................................................................... 28
Vad har gjorts under de senaste åren i kommunala fastigheter ................. 28
Vad finns för planerade åtgärder under en fyraårsperiod .......................... 28
Miljökonsekvensbeskrivning ....................................................................... 28

KOMMUNAL ENERGIRÅDGIVNING/INFORMATION .................................. 30
Energirådgivning till företag ....................................................................... 30
Förslag ............................................................................................................ 30
Miljökonsekvensbeskrivning ....................................................................... 30

KOLLEKTIVTRAFIKEN .............................................................................. 31
Förslag ............................................................................................................ 31
Nationella riktlinjer och mål

Den svenska energipolitikens mål är att på kort och lång sikt trygga tillgången av el och annan energi till omvärlden konkurrenskraftiga villkor och med låg negativ påverkan på hälsa, miljö och klimat.

- Riksdagen beslutade år 1997 om ett energipolitiskt program för en uthållig energiförsörjning. Vilket bl.a. inneburit att båda kärnkraftswerken i Barsebäck stängts.


El som produceras med hjälp av vindkraft, solenergi, geotermisk energi, vattenkraft och vågenergi samt biobränsle är sådan elproduktion som föreslås berättiga ägarens innehavare till el-certifikat (gröna certifikat).

En effektivare energianvändning föreslås bli stimulerad genom satsningar på information och utbildning, den kommunala energirådgivningen samt teknikupphandling och marknadsintroduktion av energieffektiv teknik.

- En strategi för minskad klimatpåverkan från energisektorn föreslås. Detta kommer till uttryck i regeringens proposition 2001/02:55, Sveriges klimatstrategi. 


Det finns ett antal olika styrmedel som riksdag och regering kan använda för påverkan inom energiområdet. Förutom lagstiftning och ekonomiska styrmedel i form av skatter och bidrag, kan kommunala riktlinjer, rådgivning och information användas, och även frivilliga i form av miljöledningssystem.


- Frisk luft
- Grundvatten av god kvalitet
- Ett rikt odlingslandskap
- Myllrande våtmarker
- God bebyggd miljö
- Hav i balans samt levande kust och skärgård
- Giftfri miljö
- Ingen övergödning
- Säker strålmiljö
- Skyddande ozonskikt
- Levande skogar
- Begränsad klimatpåverkan

**Plan- och bygglagen** reglerar att anläggningar som för sin funktion kräver tillförsel av energi ska lokaliseras på ett sätt som är lämpligt med hänsyn till energiförSORjning och energihushållning.

**Miljöbalken** är ett annat instrument. Det övergripande målet med balken är att främja en hållbar utveckling som innebär att nuvarande och kommande generationer garanteras en hälsosam och god miljö.

**Bidrag**

Det finns ett omfattande system av fonder, både europeiska och svenska, där medel kan sökas för åtgärder som medför effektivare energianvändning och en större andel förnyelsebar energi.

- Namns kan ALTENERprogrammet, SYNERGY samt SAVE som alla ska främja utveckling, användning och stimulera att spara energi inom EU.

**Regionala och lokala mål**

Vetlanda ingår i **Höglandssamarbetet** där energi- och miljöfrågorna får en central plats. Även **länsstyrelsen** samarbetar med kommunerna för att uppnå en hållbar samhällsutveckling.

**Kommunerna** har det övergripande ansvaret för lokal anpassning av de 16 nationella miljömålen.

- **Energiplaneringen** skall hålla hög kvalitet, men också bidra till andra samhälleliga mål, exempelvis ekonomisk tillväxt, bra miljö och sysselsättning.

- I planer och dokument, t.ex. översiktsplan, energiplan, trafikplan m.m. utformas och fastställs kommunala riktlinjer. Dessa dokument är politiskt antagna men ej juridiskt bindande, och anger vilka ambitioner kommunen har i samhällsbygget.

LUFT OCH LUFTFÖRORENINGAR

Vad är luft?

Lufthavet runt vår planet består huvudsakligen av ett tiotal olika gaser. De viktigaste är kväve (78%) och syre (21%). Den resterande procenten utgörs bl.a. av ädelgaser som argon, neon och helium samt koldioxid, välgas, metan och ozon.

Vad är luftföroreningar?

De flesta av dagens luftföroreningar härstammar antingen från något slag av förbränning eller från industriella processer.

Föröreningarna kommer ut i luftnivåen när de stannar under kortare eller längre tid. En del föröreningar kan spridas över mycket långa avstånd. Andra drabbar främst den närmaste omgivningen.

Luften vi andas är egentligen en enda stor "föröreningsocktail" där våra egna svenska utsläpp blandas med sådana som kommer från övriga Europa. En del ämn kan orsaka skador var för sig medan andra kan samverka och ge upphov till mer skadliga föröreningar.

Luftföroreningar och deras effekter

Svaveldioxid
All olja, kol och även ved innehåller helt naturligt mer eller mindre svavel. När t.ex. oljan eldas reagerar svavlet med luftens syre och bildar svaveldioxid. Svaveldioxidens släpps ut med rökgaserna till luften.

I atmosfären kan nya reaktioner ske bl.a. med den vattenånga som finns där. Sva-velsyra kan bildas och den första länken i försurningskedjan har uppkommit.

Svavelföreningar är ett bra exempel på luftföroreningar som kan transporterar mycket långt över land och hav. I vårt land märks det genom att en övervägande del av det svavel som faller ner kommer från andra länder.

I de sydligaste delarna av landet kan mer än 90% härstamma utifrån. Om man tittar på det totala svavelnedfallet över Sverige så bidrar vi bara med ungefär en femtedel själva.

Kväveoxiderna
En annan viktig ingrediens i ”luftföröreningssocktailen” är kväveoxiderna. De bildas huvudsakligen genom att kvävgas i förbränningsluften reagerar med luftens syre. Kväveoxiderna kan vid kontakt med luftens vattenånga bilda salpetersyra, som idag är en starkt bidragande orsak till förstöringsskadorna. Nedfallet av kväve hjälper också till att på ett onaturligt sätt göda mark och vatten.

Kväveoxiderna spelar också en viktig roll vid bildandet av s.k. fotokemiska oxider (”smog”). Dessa uppkommer under inverkan av solljuset vid närvaro av kolväten och kväveoxider och kan ge upphov till skador på både skog och odlande grödor. Vid högre halter finns också risk att vår egen hälsa påverkas.

Kolväten
Kolväten är en stor och brokig grupp av föroreningar där det fortfarande finns en hel del frågatcken om deras effekter på både miljön och vår egen hälsa.

Kolväten kommer ut i miljön med bilavgaser men också från målnings- och lackeringsindustrier, tryckerier, plastfabriker och petrokemisk industri.

Hushållens användning av färg, lösningsmedel och avfettningssmedel är andra exempel på utsläpp av kolväten liksom utsläppen från små vedpannor och braskaminer.

I luften kan många kolväten omvandlas till helt nya föreningar. Under inverkan av solljuset kan kolväten och kväveoxider t.ex. ge upphov till tidigare omnämnda fotokemiska oxidanter. Ozon är det mest kända exemplet på en sådan oxidant. Höga ozonhalter i marknivå kan ge upphov till skador på både träd och jordbruksförråd. (Man måste skilja på marknära ozon som är skadligt och det ozon som finns i stratosfären på ca 20 km höjd över jordytan och är livsnödvändigt för att filtrera solens ultravioletta strålning).

Luften i Vetlanda
Svaveldioxid

Kvävedioxid
Även halten kvävedioxid ligger lågt i Vetlanda. Mätningar från vintern 1999-2000 och några vintrar tillbaka visar att i stark trafikerad miljö är vinterhalvårsmedelvärdet 16 µg/m³, att jämföra med miljökvalitetsnormen som anger att efter den 31 december 2005 får halten kvävedioxid inte överskrida i genomsnitt 40 µg/m³ luft under ett kalenderår.

Kolväten
Miljö- och byggförvaltningens vintermätningar av kolväten åren 1998-1999 och 1999-2000 visar på förhöjda halter av bensen där trafiken är frekvent. Högsta tillåtna halter av bensen i utomhusluften ska år 2010 vara 2,5 µg/m³ luft, uppmätt som årsmedelvärde, föreslår Naturvårdsverket som miljökvalitetsnorm. I Vetlanda har man vid stark trafikerad väg uppmätte halter på 4,4 µg/m³. Vid gågata har uppmätts 2,4 µg/m³. Detta är dock inte unikt för Vetlanda, utan det tycks vara så att praktiskt taget alla tätorter i landet lider av höga kolvätehalter som en följd av alltför mycket biltrafik.

Marknära ozon
Under somrarna fr.o.m. 1997 har miljö-och byggförvaltningen genomfört mätningar av marknära ozon. Tre mätstationer har valts ut; korsningen vid Lasarettsgatan/Missionsgatan som är hårt trafike-
rad, Orkestervägen vid Folkets park som är perifer i dominerande vindriktning, samt Lammåsa, landsbygd i dominerande vindriktning. Sommarhalvårsmätningarna visar att halten marknära ozon som medelvärde är mellan 52-67 µg/m³ i samtliga mätpunkter. Naturvårdsverkets generationsmål på 50 µg/m³ överskrids med marginal såväl inom Vetlanda tätort som på landsbygden.

**Aktuella mätningar**


**Varifrån kommer luftföroreningarna i Vetlanda?**

De luftföroreningar som drabbar oss lokalt i Vetlanda kommer främst från tre olika källor: trafiken, energiproduktionen samt olika industriella processer.

Föroreningarna kan komma från anläggningar inom vår egen kommun men en stor del ”importeras” från Europa och andra delar av vårt eget land. Det vanligaste är att vindarna bläser från väst och sydväst vilket innebär att mycket av de föroreningar som faller ner över oss ursprungligen kommer från Tyskland, Storbritannien och Danmark. Vid andra vindriktningar kommer merparten från Polen eller Ryssland.

Av de lokalt uppkomna föroreningarna utgörs den största delen av sådana som kommer från ”det enskilda kollektivet”, biltrafiken och enskilda energianläggningar. En intressant notering i det sammanhanget är att svaveldioxidhalterna i Vetlandaluften minskat från ca 10 µg/m³ i början av 1980-talet till mindre än 4 µg/m³ tio år senare. Utbyggnaden av fjärrvärmenätet är den främsta anledningen till den positiva utvecklingen. En del punktkällor i form av enskilda industrier bidrar också till utsläpp av t.ex. stoft och lösningsmedel (kolväten).

**Hur kan vi förbättra luften vi andas?**

Tre fjärde delar av Vetlanda kommuns invånare bor i en större eller mindre tätort. Mer än hälften av dessa människor bor i den största tätorten, Vetlanda. Av de luftföroreningar som nästan 13 000 Vetlandabor andas in dagligen kan vi utgå från att 80-90% kommer från biltraffen.

Svaret på frågan i rubriken är därför lika självklart som enkelt: **Åk bil mindre!**

Av alla de bilresor som görs är närmare 80% kortare än 1 mil. Mot den bakgrunden borde det gå att förbättra luftmiljön i våra tätorter väsentligt. Ta fram cykeln eller ta en stärkande promenad istället. Måste man absolut använda bilen så bör man av miljöskäl vara observant på hastigheten. Både utsläppen av kolväten och kväveoxider ökar med ökande hastighet. Om hastigheten med en bil utan katalysatorökar från 70 km/tim till 120 km/tim fyrdubblas kväveoxidutsläppen. Respekt för tomgångsökningstomgångsförbudet (max 1 min) är också bra för tätortsluften.

Att minska bilåkandet och överhuvudtaget vägtrafiken är en av de största och svåraste utmaningar vi står inför under de närmaste årtiondena. Vi i Vetlanda, vi i Sverige och vi i hela västvärlden måste ta vårt ansvar för luftmiljön i våra städer, för den sura nederbörd som hotar vår skog och våra sjöar och för de globala klimatförändringar som hotar p.g.a. höjda koldioxidhalter.
**BIOENERGI**

**Resurs för framtiden**


Vid minskad kraftproduktion i kärnkraftverken kommer elpriserna att stiga på grund av ökade kostnader med alternativ elproduktion och den bristsituation som uppstår. El blir en alltför exklusiv energiform för uppvärmning av bostäder och tappvarmvatten under den tid på året och dygnet när produktionskapaciteten inte räcker till. En övergång till vattenburen värm standbyer baserad på biobränsle i tätorter är en möjlig väg.

**Ett biologiskt kretslopp**

Den stora skillnaden mellan fossil energi och bioenergi är att bioenergin ingår i ett ständigt kretslopp medan fossil energi är rester från geologiska omvandlingsprocesser som pågått i flera miljoner år.

Bioenergin fängar in den flödande solenergin när den växer, luftens koldioxid, vatten och mineralier från marken. Biomassa bildas genom denna process, som kallas fotosyntesen, när trädet/gräset växer och energi binds kemiskt.

När man avverkar i skogen eller skördar på åkern så upphör tillväxtprocessen.

För att öka energiennehållet i bränslet torkas det och kan vidareförändras till olika bränsleprodukter eller biogas.

Vid förbränning av bioenergin frigörs koldioxid och återförs till atmosfären. Koldioxid från fossila energikällor ökar koldioxidhalten i atmosfären. En följd av detta kan vara en förändring av jordens klimat med avsmältning av is vid polerna, världshavens vattennivå stiger, vilket ger översvämning av låglänt terräng. En annan möjlig utveckling är förändring av varma havströmmar med nedisning och ökenutbredning som följd. Denna utveckling kallas växthuseffekten.

<table>
<thead>
<tr>
<th>Typ av bränsle</th>
<th>Omloppstid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halm/gräs</td>
<td>1 år</td>
</tr>
<tr>
<td>Energiskog</td>
<td>3-5 år</td>
</tr>
<tr>
<td>Björk och annan lövskog</td>
<td>30-40 år</td>
</tr>
<tr>
<td>Gran och annan barrskog</td>
<td>ca 100 år</td>
</tr>
</tbody>
</table>

Torv är en biomassa som har en tillväxt med några millimeter per år. Omloppstid sättes ibland till 0 - 10 000 år. Energiinnehåll


Genom att sänka rökgastemperaturen med värmeväxlar till returvatten i ett fjärrvärmenät kan extra energi frigöras. Det kalorimetriska värmevärde är på så sätt större än effektivt värmevärde och beror också på hur lågt rökgastemperaturen sänks eller mängden vattenånga i roktgaserna som lämnar skorstenen. Condensvattnet som uppstår vid rökgaskylning innehåller olika mycket förorsakning beroende på om energin är fossil eller biobaserad varför kondensvattnet måste
renas och pH-justeras före återförande till ett vattendrag. Vid förbränning av pellet eller briketter är det inte lönsamt att installera rökgaskondensering.

<table>
<thead>
<tr>
<th>Bränsle</th>
<th>Effektivt värmevärde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Villaolja</td>
<td>11 MWh/ton</td>
</tr>
<tr>
<td>Stenkol</td>
<td>8 &quot;</td>
</tr>
<tr>
<td>Färsk bark och trä</td>
<td>3 &quot;</td>
</tr>
<tr>
<td>Lagrad ved, lufttorkad</td>
<td>4 &quot;</td>
</tr>
<tr>
<td>Briketter, pellet, träpulver</td>
<td>5 &quot;</td>
</tr>
<tr>
<td>Frästorv färska</td>
<td>3 &quot;</td>
</tr>
<tr>
<td>ca 50 % fukt</td>
<td>3 &quot;</td>
</tr>
<tr>
<td>Halm</td>
<td>4 &quot;</td>
</tr>
</tbody>
</table>

Ett annat sätt att lätt jämföra villaolja och lagrad ved är att det åtgår ca 10 m³ ved på 1 m³ olja.

Ovanstående värmevärdet är schablonvärden med stora variationer.

**Bränsleflis**


Torrträd och rötskadat viske som ej duger till pappersmassaframställning är en stor resurs liksom den del av bark och spillet viske från sågverk och träindustri, som ej nyttjas lokalt. Uttag av biobränslen från skogen får ej ske på sådant sätt att skogens biologiska mångfald hotas. Skog och skogsrester som i samband med avverkning lämnas i naturvårdsyfte t.ex. torrträd får ej användas som biobränsle.

För att öka energiproduktionen vid förbränning av bränsleflis är det lämpligt att komplettera värmeproduktsanläggningen med rökgaskondensering.

**Miljöpåverkan med biobränsle**

Den koldioxid som frigörs vid förbränning betraktas ej som miljöpåverkande enligt ovan. Svavelinnehållet i bränslet kan variera. Med rökgaskondensering är det möjligt att reducera och binda svavel i kondensvattnet.


De negativa effekter som biobränsle kan bidra till får inte förringas men inte heller bromsa användningen av inhemskt producerat bränsle. De långsiktiga fördelarna som nås vid storskalig användning av bioenergi uppvisar klart nackdelarna. Ökad användning av bioenergi ger såväl ekonomiska som miljömässiga fördelar i förhållande till annan energianvändning.

**Beskattning**

Sveriges Riksdag belastar energin med skatter och avgifter med hänsyn till bland annat miljöpåverkan. För olja, kol, naturgas och gasol finns koldioxid och energiskatt. Svavelkatt tas ut på olja, kol och torv. Storlek på skattesatserna beror på miljöpåverkan men är också ett finansiellt
instrument. På biobränsle utgår för närvarande ingen skatt.

För att öka försäljning av fjärrvärme som används i tillverkande industri har tidigare utgått ett statligt bidrag. Bidraget är ersatt med återbäring av energiskatt och del av koldioxidskatt på använt bränsle för industrileveranser. Detta gynnar ej biobränsleanvändningen.

**Framtiden**

I begreppet bioenergi ingår förutom det som växer i skogar och på åkrar även biogas, som produceras vid rötning av avloppsslam och rötbara fraktioner i sopor, returpapper, rivningsvirke och lutar i massaindustrin.

Energikommissionen och andra utredningar har fastslagit att ytterligare energi finns att hämta från inte minst skog och åker.

Med statlig ekonomisk satsning på fjärrvärme och kraftvärme är bioenergin en del i ett uthålligt framtida energisystem.
<table>
<thead>
<tr>
<th>Anläggning</th>
<th>Fastbränslepannor Effekt (MW)</th>
<th>Oljepannor Effekt (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ekenäs Timber AB</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>Elitfönster AB</td>
<td>3,5</td>
<td>4,6</td>
</tr>
<tr>
<td>Kakelfabriken i Hultanäs</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Lagernetto AB</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>Markström &amp; Co AB</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>Metsä Tissue Nyboholms bruk</td>
<td>2</td>
<td>4,5</td>
</tr>
<tr>
<td>Metsä Tissue Pauliströms bruk</td>
<td>7,2</td>
<td>7,4</td>
</tr>
<tr>
<td>Rörvik Timber Höglandet AB Myresjösågen</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Södra Timber Ramkvilla Ramkvillasågen</td>
<td>4</td>
<td>1,8</td>
</tr>
<tr>
<td>Trivselhus AB</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Vattenfall Myresjö Kraftvärmeverk</td>
<td>8,6</td>
<td>4</td>
</tr>
<tr>
<td>Vattenfall Vetlanda Ångcentral</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>VETAB Holsby Närvarmeverk</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>VETAB Panncentral Bäckfåran</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>VETAB Panncentral Listen</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
UPPVÄRMNING

Småhus

Vetlanda kommun har, liksom många kommuner, mycket stor del eluppvärmda hus. Speciellt oroande är att 25 % av dessa fortfarande har direktverkande el. Trots bidrag för konvertering av hus med direktverkande el har ingen större förändring skett. Däremot i hus med vattenburen el har förändring gjorts. Fjärrvärme och värmepumpar har varit de främsta alternativen.


Olja som energikälla har på grund av sin höga prisnivå minskat i betydelse. Under tio procent av småhusen eldas idag med olja. Detta har stor betydelse på miljön. Oljan ersätts idag med fjärrvärme, värmepumpar eller pellet.

75 % av uppvärmningssystemen i nya småhus utgörs av värmepumpar, där frånluftsvärmepumpen är en klass för sig. Inom fjärrvärmeområdet överväger anslutning till fjärrvärménätet.

Flerbostadshus


**Industrin**

För industrin finns ingen säker statistik på energi till uppvärmning. Klart är dock att olja dominerar som energislag. Tillgänglig information visar på en förbrukning av 5 120 m³ olja, vilket troligen är i lägsta laget. Industrins oljepannor bör lätt kunna ändras att eldas med fasta bränslen. 15 företag med stor energiförbrukning använder idag fasta bränslen för sin uppvärmning.

De senaste åren har efterfrågan på fjärrvärme, i centralorten, ökat. Fortsatt fjärrvärmeutbyggnad möjliggör ytterligare minskning av fossil energi.

**Offentliga byggnader**


### Regionala oljeleveranser efter förbrukningskategori, m³

<table>
<thead>
<tr>
<th>Kommun</th>
<th>Vara</th>
<th>Förbrukarkategorier</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Jordbruk</td>
</tr>
<tr>
<td>Vetlanda</td>
<td>Bensin</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Diesel</td>
<td>363</td>
</tr>
<tr>
<td></td>
<td>EO 1</td>
<td>2 076</td>
</tr>
<tr>
<td></td>
<td>EO 2.5</td>
<td>3 515</td>
</tr>
</tbody>
</table>

*Källa SCB 1994*

Abonnenter anslutna till fjärrvärme t.o.m. 2004

Villor 650 st.

Övriga 151 st.

Anmälda värmepumpsinstallationer t.o.m. 2004

850 st. huvudsak villor.

Anmälda primär- och lokaleldstäder från 1997 till 2004

=391 st.
Mål för den förnybara elproduktionen inom elcertifikatsystemet


Ett kvotbaserat elcertifikatsystem

Det system som har införts är en ny stödform för att främja produktionen av el från förnybara energikällor är baserat på ett s.k. kvotbaserat el-certifikat system. El-certifikaten ersätter det nuvarande systemet med investeringsstöd, stöd till småskalig elproduktion och skattesubventioner som gäller till utgången av april 2003.

Ett kvotbaserat el-certifikatsystem innebär att dels producenter av förnybar el tilldelas el-certifikat av staten och dels att el-användarna blir skyldiga att köpa in el-certifikat i förhållande till sin elförbrukning, s.k. kvotplikt. El-certifikaten kommer att efterfrågas av elleverantörer och el-användare, som är kvotpliktiga, dvs. de har en skyldighet att till staten inga kvotcertifikat i förhållande till den mängd el man sålt eller förbrukat. Den kvotpliktiga som inte uppfyller sin åtagande ska köpa kvotplikt drabbas av en sanktionsplikt, en avgift, som ska betalas till staten i det fall kvotplikten inte fullgörs.

Varje år ökar mängden el-certifikat som de kvotpliktiga är skyldiga att köpa. Detta medför en ökande efterfrågan på elcertifikat och är därmed en stimulans till att produktionen av förnybar el ökar. Elcertifikatsystemet innebär att producenterna av förnybar el får därmed en extra intäkt för produktionen av förnybar el utöver intäkten från den producerade elen.


Myndigheten/riksdagen förbehåller sig rätten att ändra procentåtalen.

El-certifikatsystemet är avsett att främja produktionen av el från förnybara energikällor och därigenom ökar deras andel av den totala elproduktionen i Sverige.

Elleverantören föreslås få rätt att ta ut kostnaden för de el-certifikat som motsvarar användaren elförbrukning. I förslaget behandlas dock tillsvidarekunder samt kunder som har tidsbestämt avtal olika avseende vilka kostnader som kan debiteras vidare.

Elleverantören kommer att vara skyldig att på räkningen särskilt redovisa det pris kunden debiteras för el-certifikaten

Den el-intensiva industrins, massa och papper, kemisk industri, stål- och metallverk samt gruvindustri, framtida kvotplikt är föremål för utredning. Därför har den inledningsvis kvotplikt noll, dvs. de behöver inte lämna in el-certifikat. Detta kan komma att förändras i framtiden.
Tabellen visar förslaget till hur kvotplikten utvecklas fram till och med år 2010.

<table>
<thead>
<tr>
<th>År för vilket kvotplikt ska fullgöras</th>
<th>Antal el-certificate per för- såld eller för-brukad MWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>0,074</td>
</tr>
<tr>
<td>2004</td>
<td>0,081</td>
</tr>
<tr>
<td>2005</td>
<td>0,104</td>
</tr>
<tr>
<td>2006</td>
<td>0,126</td>
</tr>
<tr>
<td>2007</td>
<td>0,141</td>
</tr>
<tr>
<td>2008</td>
<td>0,153</td>
</tr>
<tr>
<td>2009</td>
<td>0,160</td>
</tr>
<tr>
<td>2010</td>
<td>0,169</td>
</tr>
</tbody>
</table>

Elleverantörer ska per automatik ansvara för sina kunders kvotplikt. En el-användare kan dock välja att hos Energimyndigheten registrera sig som kvotpliktig och betala en avgift för detta. Då åtar sig el-användaren att på egen hand införskaffa, betala samt redovisa sina el-certifikat.
Elförsörjningen

El-användningen har förändrats de senaste årtiondena. Stora el-användare är bostads- och servicesektor samt industrin.

I Sverige använder vi ca 15 000 kWh per invånare och år. Vi är den fjärde största el-användaren per invånare i världen efter Norge, Kanada och Island. Det beror främst på vårt kalla klimat, men även på att vi har en energikrävande industri.

Medan den totala energianvändningen varit konstant har elanvändningen ökat kraftigt i Sverige sedan 1970. Speciellt i våra bostäder och i servicesektor har elanvändningen gått upp i och med den ökade andelen elvärme. Sverige har relativt mycket elvärme, ca 32 TWh totalt, varav två tredjedelar är beroende av ute-temperaturen, resten används bl.a. till tappvarmvatten.


El har ersatt fossila bränslen som kol och olja i industriprocesser. Det har gjort oss mindre beroende av olja och bidragit till en bättre miljö. I tider av högkonjunktur stiger också elanvändningen inom industrin. Trots att industrin har ökat elanvändningen åtgär ungefär lika mycket el per producerad vara idag som för över 40 år sedan. Elanvändningen har blivit effektivare. Samtidigt har beroendet av väl fungerande elleverans i varje sekund ökat med datoriseringen och automatiserings.

2002 använde Sverige 148,7 TWh el preliminärt, en minskning med knappt 1,7 TWh jämfört med året innan. Till bostäder åtgick 45 TWh, kontor och service 35 TWh, elpannor i värmeverk 1,3 TWh och i industrin 57 TWh. Under år 2003 ökade nettoimporten till 14 TWh.

Hushallen använder el till mycket. En elvärmd villa på 150 kvadratmeter och fyra personer konsumerar ca 22 000 kWh per år. 12 500 av dessa går till värme, 4 000 kWh till varmvatten, 2 100 till matlagning inklusive kyl och frys, 1 000 till beleysning, 600 till disk- och tvätthantering samt 1 800 till ventilation m.m. Det ökade antalet datorer i hem och på arbetsplatser innebär också att elanvändningen ökar.
**Elmarknad**

Det är bara den del av elpriset som kan hänföras till själva produkten el som är utsatt för konkurrens. Övriga delar i elpriset är nätagift och skatter. Den nya elmarknaden ger klienterna rätt att fritt välja eleverantör. En kraftbörs har skapats som på sikt ska omfatta hela Norden.


### Priset varierar med vattentillgången

Medelpriset på spotmarknaden är 2002 var 24,6 öre/kWh, vilket är högre än medelpriset år 2001, 21,4 öre och år 2000, 10,8 öre. De ökade priserna kan bäst förklaras med lite nederbörd i Norden. Efter en rad år med hög vattentillrinning förändrades läget med låga nivåer i de nordiska vattenmagasin.

### Spotprisets utveckling sedan 1996

<table>
<thead>
<tr>
<th>År</th>
<th>Systempris</th>
<th>Stockholm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>26,3</td>
<td>26,0</td>
</tr>
<tr>
<td>1997</td>
<td>14,6</td>
<td>14,4</td>
</tr>
<tr>
<td>1998</td>
<td>12,3</td>
<td>12,0</td>
</tr>
<tr>
<td>1999</td>
<td>11,8</td>
<td>11,9</td>
</tr>
<tr>
<td>2000</td>
<td>10,8</td>
<td>12,0</td>
</tr>
<tr>
<td>2001</td>
<td>21,4</td>
<td>21,1</td>
</tr>
<tr>
<td>2002</td>
<td>24,6</td>
<td>25,2</td>
</tr>
</tbody>
</table>

En nordisk elbörs har många fördelar. Alla nordiska kraftanläggningar kan utnyttjas på ekonomiskt och miljömässigt bästa sätt. Anläggningar med låg rörlig elproduktionskostnad (kostnad för bränsle, drift, underhåll, skatter och avgifter) - vattenkraft och kärnkraft - körs innan de med högre kostnad startas. Det gynnar också miljön eftersom de anläggningar som sist tas i drift är kondensanläggningar och gasturbiner som drivs med fossila bränslen.

Handelsutbyte med el pågår hela tiden mellan de nordiska länderna och mellan Norden och övriga Europa. År 2002 importerade Sverige 20,1 TWh och exporterade 14,8 TWh. Torråret 1996 importerede vi 6,1 TWh mer än vi exporterade. År 2001 importerade Sverige 11,1 TWh och exporterade 18,5 TWh.
Utrikeshandeln med el 2002, TWh

<table>
<thead>
<tr>
<th>Land</th>
<th>Import</th>
<th>Export</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danmark</td>
<td>4,1 (2,2)</td>
<td>3,5 (3,2)</td>
</tr>
<tr>
<td>Finland</td>
<td>2,5 (2,6)</td>
<td>6,5 (5,1)</td>
</tr>
<tr>
<td>Norge</td>
<td>12,0 (5,2)</td>
<td>2,8 (7,5)</td>
</tr>
<tr>
<td>Tyskland</td>
<td>1,4 (1,1)</td>
<td>0,9 (1,0)</td>
</tr>
<tr>
<td>Polen</td>
<td>0,2 (0)</td>
<td>1,1 (1,7)</td>
</tr>
<tr>
<td>Summa</td>
<td>20,1 (11,1)</td>
<td>14,8 (18,5)</td>
</tr>
</tbody>
</table>

Elproduktion 2003

<table>
<thead>
<tr>
<th>Energikälla</th>
<th>TWh/år</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vattenkraft</td>
<td>53</td>
<td>36,40</td>
</tr>
<tr>
<td>Vindkraft</td>
<td>0,6</td>
<td>0,41</td>
</tr>
<tr>
<td>Kärnkraft</td>
<td>65</td>
<td>44,64</td>
</tr>
<tr>
<td>Värmekraft</td>
<td>13</td>
<td>8,93</td>
</tr>
<tr>
<td>Import</td>
<td>14</td>
<td>9,62</td>
</tr>
<tr>
<td>Summa</td>
<td>145,6</td>
<td></td>
</tr>
</tbody>
</table>
Vattenkraftanläggningar i Emån Vetlanda kommun
Installerad effekt

- Hällinge: 170
- Klinte: 3500
- Hargen: 80
- Brunnshult: 1200
- Flugeby: 260
- Skede: 50
- Sjunnen: 800
- Sjunnén: 800
- Aspö: 680
- Brukgården: 800
- Ädelfors: 800
- Turefors: 1200
- Holsby: 120
- Kvillsfors: 1200
Åtgärdsdel

Energieffektivisering av hyresfastigheter


Witalabostäder, som äger och förvaltar ca 1 145 lägenheter, har en stor energiförbrukning. Flertalet lägenheter i centralorten är anslutet till fjärrvärmesystemet. Oavsett vilket värmesystem man har finns ofta stora besparingar att göra speciellt i de äldre bostäderna. Energikonsulter menar att man kan göra energibesparinger upp till 30 % med enkla åtgärder.

Förslag

Kommunen och dess bolag skall:

- genom energianalyser peka på vilka besparingar som kan göras.
- utreda vilka fastigheter som kan byta energislag för uppvärmning.
- med energianalysen som underlag ta fram ett flerårigt handlingsprogram som också ansluter sig till kommunens miljöpolicy.

Miljökonsekvensbeskrivning

En övergång från fossila energikällor till flödande är helt i överensstämmelse med kommunens miljöpolicy. Minskning av energiförbrukningen är bra för miljön oavsett var minskningen sker.
Gasutvinning för uppvärming och/eller drivmedel


Deponigas är en högvärdig energikälla som är lättare att använda för uppvärming än som drivmedel till fordon. Det är också svårt att från deponigas få den höga kvalité som krävs för fordongas. Den nya tekniken med rötning i planrektor kan möjligligen ge en så pass bra gaskvalité att den duger som råmaterial för fordongasproduktion. I dagsläget ersätter gasen olja i fjärrvarmessystemet och så länge den gör det finns det mindre anledning att från miljösynpunkt diskutera fordongasstillverkning. Vad man inom den närmaste framtiden instället bör diskutera är att utnyttja den höga kvalité som gasen utgör t.ex. som råvara för kraftvärmeproduktion.

Åtgärdsförslag
- Utvärdera och maximera gasutvinningen från deponireaktorn.
- Utredicta möjligheterna för kraftvärmeproduktion med deponigas som råvarukälla.
- Följa utvecklingen på fordongasområdet.

Miljökonsekvensbeskrivning

Alternativa fordonstränslen

Vilka bränslen skall framtidens bilar drivas med? Den frågan går inte att lätt bevara i dag, men för att klara morgondagens kommunikationer och samtidigt klara miljömålen måste förnyelsebara bränslen ersätta dagens fossila bränslen. Detta är också helt i linje med kommunens mål att bli en fossilbränslefrid kommun. I dag finns följande framtida alternativa bränslen:

Etanol


Dimetyleter (DME)

DME framställs ur biopro dukter och anses vara framtidens stora alternativ till dieselsebränsle, men här krävs tid för att utveckla framställningsmetoder. En pilotanläggning planeras i Värnamo.

Rapsmetylester (RME)

RME bedöms inte få någon avgörande betydelse som alternativt bränsle, förekommer i liten omfattning genom in blandning i diesel. Rapsoljeprodukter är bättre att använda till hydraul- och smörjuppgifter. Att väsentligt öka rapsodlingen i kommunen är om inte omöjligt så mycket svårt.

Biogas


Eldrift- bränslecell- och hybridfordon

Är alla alternativ som är under utveckling. Av detta finns det i dag batteri och hybridbilar i produktion. Bränslecellen har länge ansetts bli framtidens melodi, men här återstår en hel del forskning och utveckling.

Cykel som kommunikationsmedel

Cykeln är ett utmärkt kommunikationsmedel för kortare resor, oftast mindre än 5 km. Den är inte bara överlägsen ur miljösynpunkt, den bidrar dessutom till att bättre hälsa genom ökad motion. Cykling regelbundet t.ex. till och från jobbet är också en ekonomisk lyckad affär för cyklisten, jämfört med att äka bil eller buss. Cyplingsfrekvensen ökade kraftigt i slutet på 1990-talet i samband med att
kommunen tillsammans med Vägverket drev projektet ”Miljöanpassad Trafik i Vetlanda”. Efter att projektet avslutats kan man konstatera att cyklingen har minskat och är nu nere på de nivåer som hade före projektets start.

Åtgärdsförslag

- Verka för en låginblandning av etanol i bensin och diesel.

- Kommunen bör öka andelen FFV-fordon i sin fordonspark, genom att ställa tydliga krav i upphandlingen.

- Verka för att linjetrafik övergår från diesel till etanoldrift.

- Verka för lokal tillverkning av etanol ur träavfall, såväl från sysselsättning som miljösynpunkt.

- Följa utvecklingen på fordonsgasområdet.

- Regelbundna och återkommande informationssatsningar på att öka cykeltrafiken i kommunen.

Miljökonsekvensbeskrivning

Biogas, etanol, RME, DME som framställts av biobränslen är alla s.k. kretsloppsbränslen dvs. koldioxid som bildas vid utsläpp kan åter bindas till växtlighet en och på detta sätt bidrar de inte till växthuseffekten. Det gör heller inte cyk ling som även kan anses vara friskvård och bidra till en bättre hälsa genom ökad motion. Intensiv odling av spannmål alternativt raps för energiframställning (etanol alternativt RME) kan ge läckage av gödande ämnen. Bättre då att ta råvaran till etanoltillverkning i form av skogsruster från skogsavverkning och träbearbetning i sågverk och på träindustrier. Det är inte bara en miljöåtgärd utan ger också lokala jobb.
VÄGAR OCH TRAFIK


Tillgången till motorvämare på arbetsplatser etc. är relativt dåligt utvecklad i Vetlanda. Vissa privata arbetsplatser har anordnat sådana liksom enstaka kommunala anläggningar. Här finns dock en stor potential för förbättring där t.ex. kommunen skulle kunna vara föregångare. Genom användning av motorvämare vid kallstarter, då temperaturen är lägre än +10 grader, beräknas bensinförbrukningen minska med 0,2 liter bensin/kallstart. Motorvämare minskar också emissionen under kallstart med ca 85 % för kolmonoxid och ca 70 % för kolvatten.

Åtgärdsförslag

- Fortsatt utbyggnad av cykelvägnätet motiverar till ökat cyklande/mindre bilåkning.
- Beläggning av cykelväg mot Ekenässjön, Sjunnen och Landsbro underlättar cyklingen/mindre bilåkning.

Miljökonsekvensbeskrivning

Nybryggnad av vägar som medger jämnare hastigheter och förkortar väglängd medför minskad energiförbrukning. Enbart för väg 127 mellan Sjunnen och Alsedo uppgår besparingar av drivmedel till ca 66 000 l/år och 171 ton koldioxid/år.

Attraktiva och bra cykelvägar medför ett ökat cyklande med motsvarande minskning av bilåkningen som också bidrar till minskad energiåtgång.
Energibesparing

Tekniska kontorets fastighetsavdelning har sedan mitten av 70-talet prioriterat energibesparande åtgärder i kommunala byggnader, i vissa fastigheter med upp till 50%.

Fastighetsavdelningen har sedan 1997 arbetat med 10 energieffektiviseringsmål.
1. Belysning
2. Ventilation
3. Uppvärmning
4. Kyla
5. Storkök
6. Värmeproduktion, priser
7. Konvertera värmesystem
8. Styrsystem och reglersystem
9. Värmeåtervinning
10. Beställarrollen

Kontinuerliga utbildningar för fastighetspersonal fortskrider.

Underlag i form av dels tekniska beskrivningar samt energistatistik (finns på samtliga fastigheter) har legat till grund på åtgärder för att minska energiförbrukningen.

Vad har gjorts under de senaste åren i kommunala fastigheter
- Fortsatt utbildning av fastighetspersonal
- Fortsatt datoriserad övervakning av de tekniska systemen i fastighetsägarna
- Återvinning av energi från kylmaskiner på Tjustkulle idrottsanläggning
- Återvinning av värme från badhuset i Myresjö simhall
- Omläggning och konvertering av elvärme-luftvärmevarmer till fastbränslepannor i Bäckseda och Nye skolor samt räddningstjänstens lokaler i Vetlanda
- Nävarostyndning av belysning i Myresjö sport- och simhall

- Energiutredningar i flertalet fastigheter som förvaltas av tekniska kontorets fastighetsavdelning

Vad finns för planerade åtgärder under en fyraårsperiod
- Vid ombyggnation och nybyggnation välja energi- och kostnadsbesparande system.
- Konvertering av värmeproduktion från olja till fastbränsleanläggningar: Bostadshus i Landsbro, Skede skola, Kvillsfors skola, Ekenässjön skola, Landsbro skola
- Utbyte till fjärrvärme i fastigheter där möjligheter finns.
- Utbyte av belysning med närvarostyrd ventilation (innefattar även ventilation) i stadshuset.
- Utbyte av belysning i Borohallen Landsbro.
- Utbyte av belysning i Ekenässjöns idrottsshall.

Fastighetsavdelningens målsättning beträffande energibesparing är att effektivisera energianvändningen optimalt. Till grund ligger en avvägning mellan ekonomi och anläggningarnas förutsättning att minska energiatgången genom investeringar och genom användande av energin när och där den behövs.

En målsättning är också att försöka minska elberoendet enligt de 16 tagna miljömålen.

Miljökonsekvensbeskrivning

Betydande positiva effekter för människor och miljö har erhållits genom den minskade energiförbrukningen. Genom att fortsätta arbetet med energieffektivisering enligt åtgärdsförslagen ovan kommer behovet av elenergi i aktuella fastigheter att minska med ca 100 000 kWh.

Oljeförbrukningen reduceras med ca 370 m³ vid en konvertering till fastbränsle vid
ytterligare 4 skolor och en ishall. Detta motsvaras av en minskning av växthusgasen CO₂ med ca 1 200 ton. En övergång till fastbränsle medför också att vi minskar behovet av en ändlig naturresurs.

Årlig energianvändning för respektive energilag i samtliga kommunens fastigheter år 1999

Årlig energianvändning för respektive energilag i samtliga kommunens fastigheter år 2004
Kommunal energirådgivning/information

Vetlanda kommun har sedan 1980-talet arbetat med rådgivning i energifrågor för att underlätta energiomställningen. Riksdag och regering har beslutat om en snabb energiomställning till miljövänliga energikällor.


Energirådgivning till företag


Förslag

- Energirådgivningen skall ses över, och finna former och metoder som överensstämmer med dagens behov och målgrupper.
- Sprida information/kunskap till kommunens förvaltningar, som kan hjälpa till att sprida budskapet, vilket kan påverka utvecklingen mot en effektivare energi- och resursanvändning.
- Skapa ett utökat samarbete på höglandets genom fastare nätkontakter. Höglandets kommunalförbund bör administrera en energirådgivare som i huvudsak ägnar sig åt företag i alla fem kommunerna och är en länk till och mellan kommunens energirådgivare.

Miljökonsekvensbeskrivning

Lokal energirådgivning syftar till att minska energianvändningen, oavsett bränsle/energislag. All energianvändning påverkar miljön negativt. Den energi som sparas av aktiv energirådgivning är den bästa ur miljösynpunkt. Energiförbrukningen leder också ofta till förändring av energislag, från fossil till förnyelsebar energi.
Kollektivtrafiken


Ny teknik har inneburit att förekomsten av koloxid och kolväten reducerats till förhållandevis låga nivåer. Även utsläppen av NOX och partiklar har sjunkit under senare år, men här krävs fortsatta nyinvesteringar i fordon för att trenden ska kunna upprätthållas.


Förslag

Kommunkansliet får i uppdrag att:
- Utreda vilka effekter gratis kollektivtrafik skulle få på miljön. Kostnaden för gratis kollektivtrafik ska naturligtvis också redovisas.
- Turlistorna ses över så att de anpassas till resandenas behov.
- Vid behov öka antalet turer.

Resepolicy

Kommunen har en resepolicy som syftar till att tjänster skall vara trafiksäkra, kostnadseffektiva och miljöanpassade. Bl.a. föreskrivs maximal bränsleförbrukning på egna och leasade personbilar samt möjligheten att använda förnyelsebart bränsle.

Miljökonsekvensbeskrivning

Trafiken är en av de största föroreningsekällorna. Även med miljöförbättrade bilar dröjer det länge innan naturen återhämtar sig. Vi kan påskynda återhämtningen genom att minska antalet bilar på våra vägar. 10 % minskat resande per personbil genom ökad kollektiv åkning med buss skulle avsevärt förbättra miljön.
Kraftvärmeproduktion

Med allt högre energipriser på el uppstår frågan ånyo om vi inte lokalt kan producera mer el inom kommunen. Tidigare beräkningar har visat sig olönsamma, trots en statlig bidragsdel.


Förslag

- Vetlanda Energi AB får i uppdrag att på nytt ta fram underlag på en biobränslebaserad kraftvärmeproduktion.

- Anläggningen kan uppföras och drivs i privat regi.

Miljökonsekvensbeskrivning:

Lokaliseringen i utkanten av Vetlanda tätort innebär mindre utsläpp av stoft och föroringar från befintlig panncentral. Störningar som transporter och flishanteering minskar i centrala Vetlanda. Tillverkning av el och värme av biobaserat bränsle skulle ytterligare minska koldioxidutsläppen från förbränning av fossil material. Den klara vinnaren är miljön genom en ökad produktion av el från förnybara energikällor, som inte bidrar till utsläpp av växthusgaser.
Minska olje- och elberoendet

Riksdag och regering tar nu krafttag för att minska utsläppen av CO\textsubscript{2}. Genom olika stimulanspaket kan kommunerna få del av statliga bidrag till att skära ned den fossila energianvändningen.

Alternativ till fossil energi finns i form av biobränsle som pellet, flis och ved. För de som kan är anslutning till kommunens fjärrvärmenät ett bidrag till användning av inhemsk råvara. Över 90 % av fjärrvärmeverkets energi kommer från biobränslen. Energi från biobränslen är ofta billigare än andra alternativ.


Förslag


- Förstärkt kommunal energirådgivning till fastighetsägare om andra bra alternativa energikällor.

Miljökonsekvensbeskrivning

Oljan som är ett fossilt bränsle bidrar fullt ut med ökning av koldioxidhalten. För varje m\textsuperscript{3} olja som konverteras bort minskar man utsläppen av koldioxid med 2,6 ton/år, kväveoxid med 0,8 kg/år och svaveldioxid med 5 kg/år. Om elenergin tillverkas med hjälp av olja i s.k. kondenskraftverk kan ett hushåll med värmepump få liknande besparings om man går över till alternativa bränslen.
Energi- och miljöfrågor vid upphandling

När man skall göra upphandlingar är det av stor vikt att välja energisnålt och miljövänligt. Det är oftast ett klart samband mellan energisnålt och miljöanpassat. Det finns också i många sammanhang uttalade krav på att lyfta fram miljön i varje upphandling. Detta nämns i grundläggande EU-direktiv angående den gemensamma marknaden. Det finns också flera grundläggande principer i miljöbalken:

- Hushållningsprincipen, använda så lite naturresurser som möjligt.
- Kretsloppsprincipen, varor skall i möjligaste mån återbrukas annars återvinna, produktvalsprincipen, den produkt på marknaden med lägst negativ miljöpåverkan för natur och människor skall väljas.
- Försiktighetsprincipen, redan risken för negativ miljöpåverkan eller osäkerhet om en produkts miljöeffekt innbär skyldighet att vidta skyddsåtgärder.

Lagen om offentlig upphandling, LOU, anger riktlinjer för hur stat och kommun skall hantera sina inköp.

Krav ur LOU perspektiv
- Relevanta
- Rimliga
- Proportionella
- Icke diskriminerande
- Objektiva
- Mätbara
- Tydliga
- Förutsebara

Att handla energisnålt och miljöanpassat är ett medvetet val, att välja att gå före och agera för att bilda opinion och ge förutsättningar för en fungerande marknad. Vill man vara föregångare räcker det inte att bara anpassa sig till just nu rådande opinion. För att lyckas och för att skapa ett stöd i verksamheten för det val man gör krävs ett långsiktigt arbete där information och utbildning till de som nyttjar det som inköpet avser är grundläggande.

Ekonomi


Vi bestämmer vad vi vill upphandla


Kvalificering

En leverantör skall uppfylla de krav på ekonomisk och teknisk förmåga som är rimliga i förhållande till uppdraget. I denna kvalificering bör också miljöarbete vägas in. Det går t.ex. att plocka bort en leverantör som är dömd för miljöbrott eller som har sådana brister i miljöarbetet att lagkrav inte uppfylls (LOU kap 1, 17 §). Vid varje upphandling skall deklarat-
ion om anbudslämnarnas miljöarbete be-
gäras in.

Krav på tillverkningsprocessen måste
skiljas ut från de krav som ställs på själva
produkten eller tjänsten samtidigt som
kravet inte får vara diskriminerande en-
ligt LOU, kap 1, 17 §. Miljökraven väger
tyngst vid själva nyttnjandet av produkten.
Bestämmelsen omfattar naturligtvis inte
sakliga krav på tillverkningssätt som ger
upphov till allvarliga miljöföroreningar,
försurande utsläpp etc.

LOU (kap 1, 12 § ang. tekniska specifi-
kationer) ger möjlighet att hänvisa till
"kriterierna för miljömärken om kriteri-
erna för märket har utarbetats på grundval
av vetenskaplig information" Detta avser
de officiella miljömärkena Svanen, Fal-
ken och EU-bloppan.

**Hjälpmedel**

Genom ett samarbete på nationell nivå
har ett verktyg som kallas EKU-verktyget
tagits fram. EKU-verktyget är dock inte
heltäckande och det faller på varje för-
valtning att söka aktuell information vid
varje upphandling. Miljöorganisationer,
miljömärkningar, branschorganisationer
m.fl. är viktiga källor.

**Inköp och arbetsmiljö**

Vår arbetsmiljö påverkas i högsta grad av
de beslut som tas i samband med inköp
av varor, utrustning, inventarier, material,
tjänster osv. Det är därför viktigt att göra
en helhetsbedömning där personal och
verksamhetskrafter står i centrum.

**Förslag**

- Vid upphandling skall alla tillämpa
  den policy som antagits för miljöan-
passad kommunal upphandling och
  välja det mest miljöanpassade alterna-
tivet vid upphandlingar, inom ramen
  för LOU. Policyn är kortfattad och
  miljödelen i policyn lyder "Miljömed-
  vetenheten skall hållas på en hög nivå
  och miljöanpassade lösningar skall
  prioriteras så långt detta är förenligt
  med gällande lagar för upphandling."

**Miljökonsekvensbeskrivning**

Det är oftast ett klart samband mellan
energisnålt och miljöanpassat. I de lägen
där det finns möjlighet att välja energi-
slag eller energisnålt har det stor bety-
delse globalt om vi gör ett miljömedvetet
val även om det är i liten skala. Den
energiproduktion som vi har idag vare sig
det sker för uppvärmning, transporter el-
er annat ändamål har mer eller mindre
negativ inverkan på miljön, därför är det
angeläget att uppmärksamma detta vid
upphandlingar.
Utbyggnad av närvärme


Förslag
- Energiverket får i uppdrag att påskynda en slutlig marknadsundersökning och utbyggnad i nämnda orter
- Kommunens fastigheter anpassas till miljöriktiga energislag.
- Fastigheter intill t.ex. skolor ska kunna ansluta sig till den kommunala värmecentralen, där tekniska och ekonomiska möjligheter föreligger.

Miljökonsekvensbeskrivning

En snabb utbyggnad av närvärmecentraler med miljöriktiga energikällor skulle minska tillskottet av koldioxid avsevärt. Räknar man in långa transporter av exempelvis olja blir miljövinsten än större vid övergång till inhemskt bränsle.
BEGREPPSFÖRKLARINGAR

Biobränslen:
Bränslen av biologiskt ursprung, som kan nybildas inom överskådlig tid, t ex skogsavfall eller energigrödor.

Fossila bränslen:
Bränslen av organiskt ursprung som bildas under mycket lång tid i naturen. Kol, olja och naturgas är fossila bränslen.

Förnyelsebara energikällor:
Benämning på energikällor som ständigt förnyas t ex skog, sol och vind.

Inhemska bränslen:
Bränslen som det finns tillgång till inom landet.

Konvertering:
Att övergå från att använda en energiform till en annan.

Laststyrning:
Styrning vid inkoppling av effekter, stora effekter kopplas in med en viss tidsförskjutning.

CO₂:
Koldioxid, en s.k. växthusgas som bildas vid förbränning. CO₂ kan öka jordens medeltemperatur (växthuseffekten) Växterna omvandlar koldioxid till syre (fotosyntes).

Effekt:
Energi per tidsenhet uttryckt i watt (W)

Energi:
Effekten gånger tiden. Energi mäts i wattsekund (Ws), kilowattimmar (kWh).

PAH:
Samlingsnamn för ett stort antal ämnen med flera bensenringar.

VOC:
Samlingsnamn för flyktiga organiska kolvåten.
Energiinnehållet i olika bränslen

<table>
<thead>
<tr>
<th>1 l råolja</th>
<th>10.1 kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 l bensin</td>
<td>8.7 kWh</td>
</tr>
<tr>
<td>1 kg kol</td>
<td>7.6 kWh</td>
</tr>
<tr>
<td>1 kg gasol</td>
<td>12.8 kWh</td>
</tr>
<tr>
<td>1 kg flytande naturgas</td>
<td>5.6 kWh</td>
</tr>
<tr>
<td>1 kg torv(50 % vatten)</td>
<td>2.4 kWh</td>
</tr>
<tr>
<td>1 kg ved</td>
<td>4.4 kWh</td>
</tr>
<tr>
<td>1 kg sopor</td>
<td>2.8 kWh</td>
</tr>
<tr>
<td>1 kg pellets</td>
<td>4.7 kWh</td>
</tr>
</tbody>
</table>

Förteckning över prefix

<table>
<thead>
<tr>
<th>1 000 = tusen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 000 000 = miljon</td>
</tr>
<tr>
<td>1 000 000 000 = miljard</td>
</tr>
<tr>
<td>1 000 000 000 000 = billion</td>
</tr>
</tbody>
</table>
Förslag till utvidgning av fjärrvärmeområde för Vetlanda centralort